Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Drug Discov Pharm ; 2(1): 37-51, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38487671

RESUMO

The antidiabetic drug metformin has been shown to reduce cardiac injury under various pathological conditions, including anticancer drug doxorubicin (DOX)-induced cardiotoxicity, which makes metformin a prime candidate for repurposing. However, the mechanisms that mediate the cardioprotective effects of metformin remain highly controversial. In this study, we tested a prevailing hypothesis that metformin activates autophagy/mitophagy to reduce DOX cardiotoxicity. FVB/N mice and H9C2 cardiac myoblasts were treated with metformin, respectively. Autophagy/mitophagy was determined by Western blot analysis of microtubule-associated protein light chain 3, form-II (LC3-II), a well-established marker of autophagic vesicles. Although metformin had minimal effects on basal LC3-II levels, it significantly inhibited the accumulation of LC3-II levels by the lysosomal protease inhibitors pepstatin A and E64d in both total cell lysates and mitochondrial fractions. Also, dual fluorescent autophagy/mitophagy reporters demonstrated that metformin slowed the degradation rate of autophagic cargos or mitochondrial fragments in the lysosomes. These surprising results suggest that metformin inhibits rather than stimulates autophagy/mitophagy, sharply contrasting the popular belief. In addition, metformin diminished DOX-induced autophagy/mitophagy as well as cardiomyocyte death. Together, these results suggest that the cardioprotective effects of metformin against DOX cardiotoxicity may be mediated by its ability to inhibit autophagy and mitophagy, although the underlying molecular mechanisms remain to be determined.

2.
Front Cardiovasc Med ; 9: 839644, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35141304

RESUMO

Doxorubicin (DOX) is an extremely effective and wide-spectrum anticancer drug, but its long-term use can lead to heart failure, which presents a serious problem to millions of cancer survivors who have been treated with DOX. Thus, identifying agents that can reduce DOX cardiotoxicity and concurrently enhance its antitumor efficacy would be of great clinical value. In this respect, the classical antidiabetic drug metformin (MET) has stood out, appearing to have both antitumor and cardioprotective properties. MET is proposed to achieve these beneficial effects through the activation of AMP-activated protein kinase (AMPK), an essential regulator of mitochondrial homeostasis and energy metabolism. AMPK itself has been shown to protect the heart and modulate tumor growth under certain conditions. However, the role and mechanism of the hypothesized MET-AMPK axis in DOX cardiotoxicity and antitumor efficacy remain to be firmly established by in vivo studies using tumor-bearing animal models and large-scale prospective clinical trials. This review summarizes currently available literature for or against a role of AMPK in MET-mediated protection against DOX cardiotoxicity. It also highlights the emerging evidence suggesting distinct roles of the AMPK subunit isoforms in mediating the functions of unique AMPK holoenzymes composed of different combinations of isoforms. Moreover, the review provides a perspective regarding future studies that may help fully elucidate the relationship between MET, AMPK and DOX cardiotoxicity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...